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ABSTRACT 
 
A new technique for ambiguity resolution at long 
distances is described.  It uses the code and carrier 
measurements on three frequencies in an unusual way.  
Specifically, it uses an averaging method to arrive at an 
accurate ambiguity-resolved and refraction-corrected 
measurement that largely overcomes the disadvantage of 
the close spacing between the L2 and the L5 frequencies.  
Of course, it works better when the second and third 
frequencies are farther apart, such as the Galileo L5 and 
E6 frequencies.  The technique is unique in that there is 
no requirement to resolve the ambiguities of the 
fundamental L1, L2 and L5 carrier phase measurements.  
Instead a wide-lane, but noisy, refraction-corrected carrier 
phase measurement is formed from two of the three wide-
lane carrier phase differences formed from the difference 
of pairs of the fundamental phase measurements.  These 
differences are ambiguity resolved using ionospheric-
matching code measurements and are then combined into 
a refraction-corrected composite measurement.  While 
this wide-lane composite is quite noisy, it can be 

smoothed with a refraction-corrected, composite 
measurement with much lower noise. 
 
The ambiguities of this low-noise composite measurement 
are not required since it is simply used to smooth the 
noise in the wide-lane refraction-corrected composite.  By 
not requiring the stepping from one ambiguity-resolved 
carrier phase measurement to another, it is largely 
immune to clock differences at the different frequencies 
which can sabotage the stepped approach.  In addition, 
because the initial ambiguity resolution is done with 
wide-lane combinations, the reliability of the ambiguity 
resolution is robust and relatively insensitive to the 
presence of small code-carrier biases. 
 
The geometry-free approach of individually resolving the 
ambiguities removes the tropospheric refraction from the 
ambiguity resolution problem.  Thus, the final smoothed, 
refraction-corrected composite measurement is insensitive 
to both ionospheric and tropospheric refraction effects.  
Though the smoothing process may require some minutes 
to reach the optimal accuracy level, the result should 
significantly extend the ranges over which RTK results 
can be obtained without requiring the modeling of the 
ionosphere. 
 
INTRODUCTION 
 
The smoothing of the code measurements with the carrier 
phase measurements is routinely done in most GPS or 
GNSS receivers.  In single-frequency receivers this 
smoothing is normally limited to time constants of one to 
two minutes to avoid biasing the smoothed measurements 
with a component of the diverging ionospheric effects. 
 
When two or more frequencies are available, the code 
measurements can be smoothed with a linear combination 
of carrier phase measurements which match the 
ionospheric refraction effects.  This allows significantly 
longer averaging time constants.  Of particular interest, 
the wide-lane carrier phase measurements formed by 
differencing the individual carrier phase measurements 
can be used to smooth a frequency weighted composite 
code measurement which matches the ionospheric 
refraction effects of the wide-lane carrier phase 



measurement.  After sufficient smoothing, the resultant 
smoothed code measurement can be used to set the 
ambiguities of the carrier phase difference measurement, 
assuming, of course, that the code measurement biases are 
small. 
 
When three or more frequencies are available, two 
independent carrier phase difference measurements can be 
formed and the ambiguities resolved via the matched 
smoothing process just described.  But having two 
ambiguity-resolved carrier phase difference 
measurements allows us to obtain a refraction corrected 
result with the appropriate linear combination.  
Unfortunately, when two of the carrier frequencies are 
close together, the linear combination that removes the 
ionospheric effects greatly amplifies the phase noise 
present in the measurements.  This can be overcome by 
smoothing the composite, refraction-corrected, ambiguity-
resolved, carrier phase measurement with another 
refraction-corrected carrier phase measurement which is 
constructed to minimize the noise without regard to the 
ambiguity resolution problem [1].  However, some 
additional accuracy may be achieved by a final residual 
ambiguity resolution. 
 
The details of this process with examples for GPS and for 
Galileo are described below. 
 
GENERAL CONSIDERATIONS 
 
There are a few general issues which need to be addressed 
before the process described in the introductory section is 
detailed.  First, for simplicity, the equations will be 
written as if there is no differencing of measurements 
across sites.  In fact, theoretically, the process can be used 
on single-site measurements.  However, there can be 
significant code versus carrier biases in the transmission 
from the individual satellites which would prevent the 
process from working on a site by site basis.  But, given 
measurements at known sites around the world, it may be 
possible to measure any code or carrier biases and 
characterize them as a function of the angle to the receiver 
site relative to the satellite fixed coordinates.  Such a 
calibration process would allow single site processing.  
Without calibration, the equations can be applied directly 
to the measurements either differenced across sites or the 
measurements of a given site after adjustment with 
corrections generated at a reference site. 
 
Second, the equations are written as if there is no 
differencing of measurements across satellites.  The 
receiver front-end filters may create, in effect, a different 
clock reference at the different received frequencies.  This 
can create a bias between the wide-lane phase 
measurements (the difference of the reference clocks at 
the two frequencies) and the matching frequency-
weighted code measurements (a weighted average of the 

clocks at the two frequencies).  If this bias is large it could 
lead to incorrect ambiguity resolution.  This problem can 
be avoided by subtracting the measurements from a given 
satellite or from an average across all satellites. 
 
Since the troposphere affects the measurements by the 
same amount at each frequency, the ambiguity resolution, 
and refraction correction processes are transparent to 
tropospheric effects.  Specifically, the ambiguity 
resolution process and the forming of the refraction-
corrected linear combination will leave the tropospheric 
component of the measurements unchanged.  The 
advantage of the “geometry-free” approach is that the 
tropospheric induced range errors do not adversely affect 
the ambiguity resolution process. 
 
RESOLVING THE WIDE LANE AMBIGUITIES 
 
The first step in the process of obtaining a low-noise 
refraction-corrected and ambiguity-resolved carrier phase 
measurement is to form at least two wide-lane carrier 
phase differences and to resolve the ambiguities in those 
wide-lane measurements.  To avoid the repetition of the 
same equations applied to a number of different 
frequencies, the process is described first using the code 
and carrier phase measurements at three general 
frequencies labeled fa , fb and fc. 
 
The code measurements, Pa and Pb, at the first two of 
these frequencies are given by: 
 

2/ aa fIP += ρ                            (1) 
 

2/ bb fIP += ρ                            (2) 
 

In these two equations, ρ is the geometric range 
(including tropospheric refraction induced error) and I is 
the ionospheric range error as a function of the inverse 
frequency squared. 
 
In similar fashion we can write the scaled carrier phase 
measurements, Φa and Φb, as a function of the raw phase 
measurements, φa and φb as: 
 

2//)( aaaaa fIfcN −=+=Φ ρφ           (3) 
 

2//)( bbbbb fIfcN −=+=Φ ρφ           (4) 
 
In these two equations N represents the unknown cycle 
ambiguity at the frequency indicated by the subscript and 
c is the speed of light. 
 
By computing the frequency-weighted average of 
equations (1) and (2) we can reduce the multipath 
corruption of the code measurements somewhat and get a 



new dependence on the ionospheric refraction error.  
Specifically: 
 

baba

bbaa
ab ff

I
ff

PfPfP +=
+
+

= ρ             (5) 

 
This frequency-weighted code measurement matches the 
ionospheric error of the wide-lane carrier phase difference 
measurement. 
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The wavelength designated, λa-b, is the wavelength of the 
difference frequency. 
 
Differencing equation (6) from equation (5) and dividing 
by the difference wavelength gives a direct measure of the 
wide-lane ambiguity. 
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Since the wide-lane ambiguity does not change as long as 
phase-lock is maintained by the receiver tracking loops, 
this value can be averaged over time (smoothed) to get an 
increasingly accurate ambiguity value.  The smoothing 
can be done with an expanding average filter. 
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(The n indicator of the amount of smoothing is dropped in 
subsequent equations.)  After smoothing, this value can be 
plugged into equation (6) to give an ambiguity resolved, 
wide-lane carrier phase measurement. 
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The amount of smoothing required to ensure that the 
correct wide-lane ambiguity is determined in equation (8) 
is a function of the wavelength of the difference 
frequency (the longer, the better).  Table 1 gives the 
associated wavelength of the difference frequencies for 
three different system choices of the three frequencies.  
The fa and fc frequencies are chosen to correspond to the 
L1 and L5 frequencies of GPS, which are common to the 
L1 and E5 frequencies of Galileo.  Three different choices 
of the middle frequency, fb, are considered, the GPS L2 
frequency (which is 51.15 MHz above the L5 frequency), 
the Galileo E6 frequency (which is another 51.15 MHz 

above the L2 frequency), and a third frequency another 
51.15 MHz above the Galileo E6 frequency. 
 

Mid. Freq λa-b λb-c λa-c 
GPS L2 0.8619 5.8610 0.7514 
Galileo E6 1.0105 2.9305 0.7514 
1.3299 GHz 1.2211 1.9537 0.7514 

 
Table 1:  Difference frequency wavelengths 

 
REFRACTION CORRECTED WIDE LANE PHASE 
MEASUREMENTS 
 
The last term in equation (9) above represents the 
corruption induced in the wide-lane measurement by the 
ionospheric refraction.  This error needs to be removed.  
The first step in removing this ionospheric error is to form 
a second ambiguity resolved wide-lane carrier phase 
measurement from the three available primary phase 
measurements. 
 
Only two of the three possible wide-lane differences 
which can be formed are independent.  Therefore, it 
makes sense to form the two wide-lane differences which 
have the widest lane width, since those will take the least 
amount of averaging time to determine the ambiguity 
values.  Thus, assuming fa > fb > fc the wide lane carrier 
phase represented by differencing the fb and fc 
measurements should be formed next.  We do not need to 
go through the above derivation all over again.  The 
appropriate equation representing the ambiguity-resolved, 
wide-lane carrier phase measurement from the fb and fc 
carrier phase measurements is directly analogous to 
equation (9) and is obtained simply by replacing the 
original subscripts with the appropriate new subscripts. 
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Having determined the Na-b and Nb-c ambiguities, the Na-c 
ambiguity can be obtained simply by summing the first 
two.  Thus, the third ambiguity-resolved wide-lane carrier 
phase difference is easily obtained. 
 
Given two equations which show a different dependence 
on the ionospheric refraction, it is a relatively 
straightforward process to generate a linear combination 
of the two measurements which removes any ionospheric 
refraction error.  Specifically, equation (10) is multiplied 
by fc/fa and then subtracted from equation (9).  
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This is the desired result.  Specifically, equation (11) 
gives us a refraction-corrected, ambiguity-resolved, 
carrier phase measurement with no ionospheric refraction 
corruption. 
 
THE NOISE PROBLEM 
 
Unfortunately, the process of forming both the wide lanes 
and the refraction correction cause the noise in the 
measurements to be substantially amplified.  The noise 
amplification is independent of which two of the three 
possible wide-lane combinations are selected for the 
refraction correction process.  In fact, assuming that it 
were possible to resolve the ambiguities on the individual 
carrier phase measurements (designate them Φa, Φb and 
Φc respectively—see equations (3) and (4)), each of the 
three possible pairs of ambiguity resolved, wide-lane 
measurements when refraction corrected—as in equation 
(11)—give rise to the same equivalent equation. 
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By picking the frequencies of L1 and L5, which are 
common to GPS and Galileo, as the fa and fc frequencies 
respectively, we can study the noise induced as a function 
of the choice of the middle frequency, fb.  Two different 
assumptions regarding the noise will be explored.  First, 
we will assume that there is noise equal to one centimeter 
in each of the phase measurements when scaled by their 
respective wavelengths.  Then we will assume equal noise 
in each of the phase measurements (19 degrees).  Scaling 
these phase errors by the wavelength results in noise of 
1.0, fa/fb, and 1.34 centimeters respectively.  These noise 
levels are quite pessimistic but are intended to include the 
effects of substantial multipath noise. 
 
The expected noise in the refraction-corrected 
measurement is given by the square root of the sum of the 
squares of the three coefficients in equation (12),  
weighted by the respective noise.  The noise resulting 
from the three previously considered choices of the 
middle frequency are explored.  Table 2 gives the 
resultant noise for these three choices of the middle 
frequency when equal phase noise is one cm on each. 
 
 
 

Mid. Freq. C1 C2 C3 RSS 
GPS L2 17.89 -84.71 67.82 109.98 
Galileo E6 20.97 -53.88 33.91 67.03 
1.3299 GHz 25.34 -46.94 22.61 57.94 

  
Table 2:  Amplification of one cm. noise 

 
Clearly, the Galileo E6 signal is substantially better than 
the GPS L2 signal for minimizing the noise of the 
refraction-corrected, ambiguity-resolved, wide-lane 
carrier phase measurements. 
 
When the noise is assumed to be 19 degrees of phase in 
each of the primary phase measurements, the advantage 
of the Galileo E6 frequency is even more pronounced.  
This is shown in Table 3 below where the weighted 
coefficients and RSS values are given. 
 

Mid. Freq wC1 wC2 wC3 RSS 
GPS L2 17.89 -108.71 90.82 142.78 
Galileo E6 20.97 -66.38 45.41 83.11 
1.3299 GHz 25.34 -55.61 30.27 68.20 

 
Table 3:  Amplification of 19 degrees of phase noise 

 
The noise in these refraction-corrected, ambiguity-
resolved, wide-lane, composite measurements rivals that 
of the raw code measurements.  However, the noise of the 
composite phase measurement is still generally better than 
a refraction corrected code measurement would yield.  
This is particularly true when biases and noise averaging 
are considered. 
 
CARRIER SMOOTHED CARRIER 
 
Just as the code measurements can be (and usually are) 
smoothed using carrier phase measurements, the 
refraction-corrected, ambiguity-resolved, wide-lane 
carrier phase measurements generated via equation (10) 
can be smoothed to substantially reduce the noise.  To do 
the smoothing we need a refraction-corrected carrier 
phase measurement with minimum noise, but the 
ambiguities do not need to be resolved. 
 
Assuming one centimeter of phase noise in each of the 
primary scaled phase measurements, the minimum-noise 
refraction-corrected combination can be determined from 
three constraints.  Specifically, the values of the 
coefficients, a, b and c, used to multiply the primary 
phase measurements at the three frequencies must satisfy: 
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The first of these three equations ensures the range 
measurement is not scaled.  The second ensures that the 
ionospheric refraction error is canceled, and the last 
ensures that minimum noise amplification occurs. (If non-
equal noise is present in the three phase measurements, 
this last equation needs to be modified appropriately.) 
 
Solving the first equation for c gives: 
 

bac −−= 1                              (16) 
 

Plugging this value for c into equation (14) and solving 
for b gives: 
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Using obvious definitions for these frequency functions, 
this can be simplified to: 
 

ba aFFb −=                             (18) 
 

Inserting the values of c and b, given in equations (16) 
and (18) respectively, into equation (15) gives the value v 
which we wish to minimize.  After simplification we get: 
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Taking the derivative with respect to a, setting it to zero, 
and then solving for the value of a gives: 
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The values of b and c can now be obtained by back 
substitution into equations (18) and (16).  The values of a, 
b, and c, obtained when the middle frequency assumes the 
three different values used earlier, is given in Table 4.  
The final column gives the estimated noise amplification 
of the equal noise primary measurements.  This shows 
that, if the primary ambiguities could be resolved, the 
GPS L2 frequency actually results in a slightly lower 
refraction corrected noise than the Galileo E6 frequency. 
 

Mid. Freq. a b c RSS 
GPS L2 2.3269 -0.3596 -0.9673 2.546 
Galileo E6 2.2691 -0.0245 -1.2446 2.588 
1.3299 GHz 2.1065 0.3135 -1.4200 2.560 

 
Table 4:  Coefficients for refraction correction with 

minimum noise 
 

Defining the minimum-noise refraction-corrected value as 
ΦΜ, its value is computed as: 
 

cbaM cba Φ+Φ+Φ=Φ                  (21) 
 

Where Φa, Φb, and Φc are the respective carrier phase 
measurements scaled by their wavelength and with the 
whole-cycle ambiguities estimated (i.e. the ambiguities 
may not be correct). 
 
Both the value computed from equation (11) and the 
value computed from equation (21) contain a 
measurement of the refraction corrected range.  Thus, 
when differenced, the value yielded will be a function of 
the multipath noise on the three frequencies and a 
constant bias error caused by any incorrect ambiguities 
used in equation (21).  Thus, 
 

MRCO Φ−Φ=                          (22) 
 
If this offset difference, O, is smoothed in an increasing-
average filter, its value will approach the negative value 
of the bias error present in equation (21).  Specifically, the 
smoothed offset is given by: 
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where the value of n increases by one at each 
measurement epoch. 
 
This smoothed bias value can then be added back onto the 
value from equation (21) to give an increasingly accurate 
refraction-corrected carrier-phase measurement without 
any bias.  Specifically, a smoothed refraction-corrected 
measurement, Φs, is obtained from: 
 

nMs S+Φ=Φ                          (24) 
 
If the noise in the phase measurements were random 
(white), the expected noise in equation (24) would 
decrease from the noise of equation (11) or (12) (as given 
in the last column of Table 2) toward the noise of 
equation (21) (as given in the last column of Table 4) in a 
one over the square root of n trajectory.  However, the 
noise is dominated by multipath effects, which are not 
white.  The noise averaging depends upon the 
autocorrelation function of the multipath and receiver 
measurement noise.  The initial positive autocorrelation 
causes the noise averaging to be slower than independent 
noise; however, after several minutes, the autocorrelation 
goes negative which causes the noise to average out faster 
than independent noise.  It should also be noted that, 
unlike code multipath effects, the carrier phase multipath 
has an equal distribution of positive and negative error 



and should average to zero over time.  The net result is 
that after 15 to 30 minutes of averaging one could expect 
the residual noise to approach a few centimeters. 
 
OPTIONAL RESOLUTION OF THE AVERAGE 
AMBIGUITY 
 
As indicated previously, only two of the wide-lane 
ambiguity-resolved carrier phase measurements are 
independent.  Thus, the third, wide-lane ambiguity value 
can be computed from the first two.  This leaves one 
degree of freedom in the whole-cycle ambiguities of the 
primary carrier phase measurements.  Specifically, given 
the wide-lane ambiguity values, if any one of the whole-
cycle ambiguities present in the primary carrier phase 
measurements can be determined, then the other primary 
ambiguities can be computed as well.  Assume, for 
example, the value of Na used in equation (3) and 
subsequently in equation (21) has been estimated to be 
one whole cycle larger than its true value.  Since the value 
of the wide lane whole cycle (Na-Nb) has been determined 
correctly in equation (7) above, the value assigned to Nb 
will also be one cycle too large.  In similar fashion, the 
value assigned to Nc will be one cycle too large.  Thus, 
constrained by the correct wide-lane ambiguity values, 
any estimation error in one of the primary ambiguity 
values will cause an equal error in each of the other 
primary ambiguity values, i.e. the average value of the 
three primary ambiguity values will be off by one.  This 
characteristic allows us to compute the effect of an 
improper estimate of a whole-cycle ambiguity on the 
refraction corrected value obtained from equation (21) 
above.  In Table 5 below, the refraction corrected 
wavelength, i.e. the range error in equation (21) as a result 
of a one-cycle estimation error in the whole cycle 
ambiguities, is given.  The contribution to this range error 
from each frequency is also given using the coefficients 
of equation (21) found in Table 4. 
 

Mid. freq. aλa  bλb cλc λRC 
GPS L2 0.4428 -.0878 -.2465 0.1085 
Galileo E6 0.4318 -.0058 -.3172 0.1089 
1.3299 GHz 0.4008 0.0707 -.3619 0.1097 

 
Table 5:  Refraction corrected wavelength 

 
In each case, the effect of an error of one cycle in the 
choice of the primary ambiguities results in a refraction-
corrected error introduced into equation (21) of almost 11 
centimeters.  Since the refraction correction in equation 
(11) or (12) is independent of errors in the primary 
ambiguities and dependent only on the wide-lane 
ambiguities, it is clear that the difference between the 
two, represented by the offset in equations (22) and (23), 
will have errors which will cancel out the error in 
equation (21).  But this means that after sufficient 
smoothing the smoothed offset value of equation (23) will 

reach a steady state value which, when divided by the 
refraction-corrected wavelength (final column of Table 5) 
and rounded to the nearest integer, will give the number 
of whole cycles by which to correct the primary whole 
cycle ambiguity values.  That is: 
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Thus, after sufficient smoothing time, estimated at 15 to 
30 minutes, it should be possible to correct the whole-
cycle ambiguity values used in equation (21) and step to 
the final optimal accuracy representative of that equation 
as indicated in the final column of Table 4.  An additional 
patent has been applied for which covers the process 
needed to resolve the final refraction corrected ambiguity. 
 
ALTERNATE METHODS FOR COMPUTING THE 
NOISE OFFSET VALUE 
 
There are several alternate means of generating the offset 
value of equation (22) above which needs to be smoothed 
to reduce the noise and to quantize it to the nearest whole 
cycle.  It turns out that the three primary measurements 
can be combined to eliminate the ionospheric refraction 
effect, leaving only the range (and noise).  Or the three 
measurements can be combined to eliminate the range 
leaving the ionospheric effect (and noise).  That leaves 
only one degree of freedom to solve for another variable.  
That independent combination can eliminate both the 
range and the ionospheric refraction effect and leave only 
a specific combination of the noise in the three 
measurements.  The particular combination of noise 
which results is that which is uncorrelated with either the 
range or the ionospheric effect.  This means that any 
measurement combination which cancels out the effect of 
both range and ionosphere will result in a scaled version 
of this same noise combination.  (This noise offset will be 
biased by any errors in the ambiguity values.)  Since the 
offset value defined in equation (22) is one such 
measurement combination that cancels out both range and 
ionospheric effects, it is a particular instance of such a 
scaled noise combination.   
 
There are, however, a number of other methods (all 
equivalent) which can be used to generate the offset 
value.  One could use different combinations of 
measurements to solve for the ionospheric refraction 
effect and then difference two of these to generate a 
scaled offset value.  Or one could use different 
combinations of measurements to generate different 
refraction corrected measurements of range and then 
difference any two of these to generate a scaled offset 
value.  Finally, one could in one step generate a 



combination of measurements which eliminates both the 
range and ionospheric effects (as is done below). 
 
Andrew Simsky, in Reference 2, describes a method of 
generating a composite measurement from three 
frequencies which has no range dependence and no 
ionospheric refraction effects.  Specifically, it has only 
noise and multipath dependence.  It is thus another 
instance of a scaled version of the offset value given in 
equation (22).  His equation (adapted to my notation) is: 
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I have labeled this as Os since it turns out it is simply a 
scaled version of the offset difference given in equation 
(22) above, which is successively smoothed in equation 
(23).  Scaling this equation a bit differently can yield 
coefficient values on a par with the coefficients in 
equation (12) above.  Specifically, form the value: 
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Clearly, the range component is canceled in each pair of 
primary measurements.  The ionospheric components are 
cancelled between terms and the residual is due entirely to 
noise and multipath plus the effect of any whole-cycle 
ambiguity estimation errors.  Simplifying the equation 
gives: 
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Table 6 gives the coefficients of equation (30) in 
numerical form when L1=fa , L5= fc  and the middle 
frequency, fb, is that shown in the first column.  For 
subsequent use, the last column shows the bias in the 
value which would result from a positive one cycle error 
in the three primary carrier phase whole cycle 
ambiguities—labeled λamb in the last column in Table 5.  
This is simply a measure of the value of the scale factor 
which is dependent on the particular way in which the 
range and ionospheric effects were eliminated.  The range 
is cancelled since the coefficients sum to zero. 
 
 

Mid. Freq. Ca Cb Cc λamb 
GPS L2 13.112 -71.085 57.973 -.09142 
Galileo E6 25.711 -74.047 48.336 -.14972 
1.3299 GHz 37.856 -77.009 39.153 -.17871 

 
Table 6:  Coefficients of Equation (30) 

 
Two options are available at this point.  First, equation 
(30) can be smoothed in an expanding averaging process 
similar to that of equation (23).  After sufficient 
smoothing the value converged to should approach a 
multiple of the λamb value in the table.  Dividing by the 
λamb value and rounding to the nearest whole number will 
give the integer by which the primary whole cycle 
ambiguities need to be corrected.  
 
A second option is better, if one wishes to use the 
refraction corrected carrier-phase measurements before 
the smoothing has been completed.  Specifically, the 
coefficients in equation (30) (i.e. the values in each row of 
Table 6) can be scaled by a constant which will cause the 
value of λamb to exactly cancel the ambiguity induced 
error in equation (21) as represented by the final column 
of Table 5.  These biases in Table 5 were obtained by 
inserting the coefficients computed in Table 4 into 
equation (21) for a given one cycle ambiguity error.  The 
appropriate scaling and the revised coefficients are given 
in Table 7.  The λamb value for each row (not shown) is 
the negative of the final column of Table 5. 
 

Mid. Freq. Scale Ca Cb Cc 
GPS L2 1.18655 15.558 -84.346 68.788 
Galileo E6 .727304 18.700 -53.855 35.155 
1.3299 GHz .613668 23.231 -47.258 24.027 

 
Table 7:  Rescaled Coefficients 

 
When equation (30) is multiplied by the scale factor given 
in Table 7, the modified coefficients of equation (30) 
which appear in Table 7 correspond precisely to the 
difference between equations (11) and (21).  This is 
verified by subtracting the coefficients in Table 4 from 
the coefficients in Table 2.  The difference is the 
coefficient values given in Table 7, which verifies that, 
with the appropriate scaling, the offset values of equation 
(21) can be obtained via alternate means.  Substituting the 
coefficients of Table 7 into equation (31) gives a direct 
equation which can be used to compute the offset, Os. 
 

ccbbaas CCCO Φ+Φ+Φ=               (31) 
 

It is appropriate to give at least one more example of how 
one might compute an alternate value of the scaled offset 
for subsequent smoothing.  As stated above, differencing 
any two refraction corrected measurements of the range 
should cancel that range and leave a scaled version of the 



offset of equation (22).  In this example we will use the 
refraction-corrected range equation from the first and 
second frequencies and will subtract from it the 
refraction-corrected range equation from the second and 
third frequencies.  Specifically, refraction correcting 
equations (3) and (4) to eliminate the ionospheric effect 
gives: 
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The parallel equation for a refraction corrected range from 
the fb and fc frequencies is: 
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Subtracting equation (33) from (32) gives the scaled 
offset equation: 
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The coefficients and wavelength (scale) are evaluated for 
the three different middle frequencies in Table 8.  
 

 
Table 8:  Coefficients of Equation (34) 

 
Like the prior alternative these coefficients can be 
rescaled to cause the effect of a whole cycle ambiguity 
error (in each primary phase measurement) to exactly 
cancel the dependence of the ambiguity induced error in 
equation (21).  This scale factor is obtained by dividing 
the value of the whole cycle ambiguity in equation (34), 
i.e. last column of Table 8, into the whole cycle ambiguity 
in equation 21, i.e. last column of Table 5 (and changing 
the sign).  The resultant scale factor and revised 
coefficients are given in Table 9. 

 
Mid. Freq. Scale Ca Cb Cc 
GPS L2 6.1116 15.558 -84.346 68.788 
Galileo E6 6.3797 18.700 -53.855 35.155 
1.33 GHZ 6.6766 23.231 -47.258 24.027 

 
Table 9:  Rescaled Coefficients 

 
Table 9 has exactly the same rescaled coefficients as 
Table 7 and the offset value, Os, is obtained again by 
inserting these coefficients into equation (31).  This 
shows that the same equation for the offset value, Os, 
results from multiple alternative derivations.  The scaled 
versions of equation (30) and equation (34) are identical.  
 
CONCLUSIONS 
 
A new three-frequency technique for obtaining geometry 
free, refraction-corrected, ambiguity-resolved, carrier-
phase measurements has been described.  First, the 
ambiguities on at least two wide lane carrier-phase 
differences are obtained by averaging the corresponding 
frequency weighted code measurements.  These two 
ambiguity-resolved measurements are then combined into 
a composite refraction-corrected measurement.  The 
resulting composite is quite noisy due to the amplification 
of the multipath noise in the original carrier-phase 
measurements.  However, this noisy refraction-corrected 
carrier phase measurement can be smoothed with another 
refraction-corrected carrier phase composite measurement 
constructed to minimize the noise.  This later 
measurement can be constructed from the primary carrier 
phase measurements prior to resolving their whole cycle 
ambiguities.  By smoothing the difference in the two 
refraction-corrected measurements, the noise can be 
reduced and the bias in the low-noise measurement (due 
to incorrect ambiguities) can be estimated and 
subsequently corrected. 
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Mid Freq. Ca Cb Cc λamb 
GPS L2 2.5457 -13.801 11.255 -.0177497 
Galileo E6 2.9312 -8.4416 5.5104 -.0170685 
1.33 GHz 3.4795 -7.0781 3.5986 -.0164258 


