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ABSTRACT 

A new method of carrier-phase ambiguity resolution is 
described.  The new technique is a variation of the least-
squares residual search technique in the ambiguity 
domain. It uses a very efficient algorithm to compute the 
residuals associated with each potential combination of 
ambiguities to be tested. Several other techniques are 
employed to simplify the calculations and to enhance the 
probability of identifying the correct ambiguity vector. 
The intent is to minimize the number of data epochs 
required to correctly identify the integer ambiguity values. 

The capability of the technique to rapidly identify the 
correct ambiguity vector is illustrated by plotting the 
results of scoring runs which exercise the search 
algorithms using recorded field data taken over different 
rover-to-base separation distances. To maximize the 
number of searches exercised in these runs, as soon as the 
ambiguity vector is identified, the results are cleared and a 
new search is initiated with all navigation parameters re-
initialized. Some navigation results are also shown which 
are typical of RTK carrier-phase navigation results. 

INTRODUCTION 

The RTK ambiguity resolution technique implemented 
within the NavCom dual-frequency receiver has several 
unique features designed to minimize the computational 
task while ensuring that a minimal data collection interval 
is required. The fundamental approach is similar to 
several least-squares residual search techniques which 
have been employed by others. [1-4] 

The first unique feature is that the base station transmits 
corrections rather than the raw data, which most RTK 
implementations transmit.  This has several advantages: 
1) it offloads part of the computation from the user 
receiver to the base station receiver; 2) it allows code 
smoothing of the base station data to occur even before 
the user receiver is turned on, which ensures a more 
accurate initial code solution; 3) it simplifies the 
processing algorithms because no differencing across 
receivers is required. 

The second unique feature is a simplified computational 
technique to generate the residuals resulting from 
candidate ambiguity vectors. This technique is the main 
subject of the paper and will be explored in some detail. 
The search process is a two-stage process which depends 
upon the availability of dual-frequency measurements at 
both the base-station receiver and the user receiver. First a 
wide-lane search is performed and up to 10 ambiguity 
vectors, which meet specific requirements (e.g. residuals 
less than a threshold value) are saved for further 
processing.  In the second stage, each of the ambiguity 
vectors determined in the first stage are tested by 
searching each satellite (except the first to avoid 
redundant clock solutions) across the two narrow-lane 
ambiguity values which result in a narrow-lane measured 
range closest to the corresponding wide-lane measured 
range. Those narrow-lane combinations, which meet a 
number of specific criteria, are scored and if more than 
one are acceptable their relative score is used to determine 
whether or not one of them can be declared the correct 
ambiguity vector. 
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INITIAL CODE SOLUTION 

The primary motivation in the initial code solution is to 
obtain the most accurate code solution possible with as 
few measurement epochs as possible. Since the baseline 
distances over which the ambiguities can be easily 
resolved are typically less than 15 kilometers, it is 
assumed that the ionospheric refraction effects can be 
modeled at both base station and user with sufficient 
accuracy that the residual ionospheric errors are almost 
negligible.  This means that the largest errors, which will 
affect the differential code solution, will be the multipath 
effects upon the dual-frequency code measurements. The 
combination of code measurements which has the 
minimum multipath error (or at least very close to the 
minimum) is the frequency-weighted sum of the code 
measurements.  This combination also has the advantage 
that it is exactly matched in ionospheric refraction effects 
by the wide-lane difference carrier-phase measurement. 
This means that it can be smoothed by the wide-lane 
carrier-phase measurement with an increasing time 
constant, i.e. the multipath error will become smaller and 
smaller as the satellite is continuously tracked.  

Because the base-station receiver is typically put in 
operation long before the user receiver, our choice of 
generating the code and carrier phase corrections at the 
base-station receiver allows the base-station code 
measurements to be smoothed such that most of the 
multipath error is removed before the code corrections are 
generated. This means that the multipath noise 
contributed by the base station receiver is largely 
eliminated. This represents a substantial advantage over 
the normal practice of sending raw base-station 
measurements to the user. 

The frequency weighted combined measurement is: 
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where f represents the frequency and P the pseudorange 
code measurement. 

The carrier-phase measurement which is affected by the 
same amount of ionospheric refraction error is: 
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where N is the integer ambiguity, φ is the carrier-phase 
measurement and λ the wavelength. 

By setting equation (1) equal to equation (2) and solving 
for the wide-lane ambiguity, Nw, a new value for the 
floating ambiguity can be computed each epoch.  
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This value for the wide-lane floating ambiguity value can 
be improved each epoch by computing the recursive 
average over all epochs up to the present time. This 
smoothed value of Nw can then be substituted back into 
equation (2) to give a smoothed carrier-phase 
pseudorange: 

                         wwNC λφφ )( 21 −+=                       (4) 

One can use the process represented by equations (1) 
through (4) at both the base-station receiver and at the 
user receiver. At the base station the smoothed carrier-
phase pseudorange is differenced with the true range to 
yield a pseudorange correction which, after removing the 
common clock effect, is sent to the user receiver. At the 
user receiver the correction is applied to the combined 
frequency-weighted code measurement as represented by 
equation (1).  A wide-lane carrier-phase correction is also 
generated at the base station by arbitrarily selecting a 
whole-lane integer in equation (2) and differencing it with 
the true range. The whole-lane error, which is made by 
arbitrarily selecting the ambiguity value at the base station 
is absorbed into the whole-lane ambiguity value at the 
user receiver. After clock removal, this carrier-phase 
correction is sent to the user receiver and applied to the 
wide-lane carrier-phase measurement as represented by 
equation (2). The significant advantage to this process, as 
indicated above, is that, due to the separate smoothing, the 
multipath corruption of the base station measurements is 
usually largely removed even before the user receiver is 
turned on. This means that the initial smoothed code 
measurements at the user receiver are more accurate and a 
more accurate code solution will be obtained. 

At the user receiver, the corrected and smoothed value of 
equation (4) for each satellite is now used in a least-
squares process to obtain an initial code solution. 

WIDE-LANE SEARCH 

While the process described above, i.e. equation (4), gave 
us a set of floating (non-integer) ambiguity values for 
each satellite, a better set (fewer degrees of freedom) can 
be obtained from the initial code solution. Also we note 
that given a set of integer ambiguities, a second set, 
differing from the first by a constant integer value for 
each satellite, will result in the same identical spatial 
position but with a different clock value.  Because our 
clock solution is of no interest and can be selected 
arbitrarily, this means that we can constrain one of the 
ambiguity values arbitrarily. In our process, we choose to 
use the highest elevation satellite as the reference satellite 
and force its ambiguity value to zero. Using the initial 
code position solution, we can compute a range, R, to 
each satellite and set it equal to the measurement 
represented by equation (2). Solving the result for the 
ambiguity value and subtracting the ambiguity value of 
the highest elevation satellite gives: 
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where the superscript, i, represents each satellite in turn 
and the superscript, r, represents the reference satellite—
in this case the highest elevation satellite.  

Our initial wide-lane carrier-phase RTK solution involves 
rounding the floating ambiguities so obtained to their 
integer values, substituting these values into equation (4) 
and computing a new least-squares position solution. The 
floating ambiguity given by equation (5) is used in the 
search process to sequentially select the closest integer 
values over the selected search range.  

We have found that searching over the four closest values 
is almost always sufficient to include the true ambiguity 
value. Given n satellites this means that there will be 4n-1 
permutations of the ambiguity vector.  Thus, there will be 
1024 permutations when six satellites meet the 
appropriate elevation criterion and 4096 when seven 
satellites are available. With each ambiguity permutation 
a set of wide-lane carrier-phase measurement residuals 
can be computed. It is these residuals which play a 
prominent role in determining the correct set of integer 
ambiguity values. However, obtaining the residuals by re-
computing a least-squares solution for each permutation is 
computationally prohibitive. A much faster way to 
compute the residuals is to use a residual sensitivity 
matrix, S. 

RESIDUAL SENSITIVITY MATRIX 

Given the linearized measurement equation: 

                                     zHx =                                      (6) 

where H is the sensitivity matrix (i.e. the direction cosines) of 
the state vector (position and clock corrections), x, to the 
innovations (difference between the measurements and their 
expected value), z. 

Equation (6) can be expanded to include a set of position 
and clock corrections corresponding to a set of 
innovations: 

                                    ZHX =                                    (7) 

Now if we want to see the separate effect on the position 
of a single whole-cycle change in the ambiguity value of 
each satellite, Z will become the identity matrix (or 
depending on units, the identity matrix times the scalar 
wavelength). 

                                    IHX =                                     (8) 

The least-squares solution for X is then: 

                            TT HHHX 1)( −=                         (9) 

For a weighted least-squares solution this becomes: 

                       111 )( −−−= RHHRHX TT                 (10) 

 

where R is the measurement covariance matrix. 

Note that the left hand side of equation (9) or (10) can be 
pre-computed and when multiplied by the appropriate 
column of the identity matrix (or scaled identity matrix) 
gives the appropriate column of X, which is the associated 
change in the position and clock caused by the integer 
ambiguity change. 

Multiplying equation (9) by H tells us how much that 
change in position will affect the innovations.  

                      TT HHHHHX 1)( −=                       (11) 

Now if we subtract this change in the innovations from 
the input value of the innovations (I) we get the effect on 
the residuals of a whole cycle change in the ambiguity 
value for each satellite. This is called the residual 
sensitivity matrix, S, and is given by: 

                       TT HHHHIS 1)( −−=                   (12) 

The residual sensitivity matrix, S, for a weighted least 
squares solution is: 

               111 )( −−−−= RHHRHHIS TT            (13) 

The S matrix has a number of interesting properties. It is 
symmetric. It is idempotent, i.e. S=S2=S3=…  The sum of 
any row or column equals zero, i.e. residuals are zero 
mean. The length of any row or column is equal to the 
square root of the associated diagonal element. Since the 
solution vector, x, has four elements, the rank of S is n-4 
where n is the number of satellites.  

The residuals of the initial RTK solution, described in the 
prior section are updated by adding the product of the S 
matrix and the matrix formed by scaling the identity 
matrix diagonal elements by the specific permutation of 
changes in the integer ambiguity values to be tested. The 
ten permutations with the smallest root-sum-square (rss) 
of residuals are saved for further narrow-lane processing 
if their rss residuals is less than an acceptable threshold 
value. 

STEPPING TO THE NARROW-LANE 

Assuming the differential ionospheric refraction is 
negligible allows us to equate the narrow-lane range to 
the wide-lane range. Thus: 

              wwNN λφφλφ )()( 21111 −+=+             (14) 

Solving equation (14) for the L1 ambiguity value gives: 
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It is interesting to note that the deviation from an integer 
value obtained for N1 in equation (15) is identical in 
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information content to the deviation one will obtain in 
attempting to step to any other narrow or wide-lane 
ambiguity value. While the deviation is not always the 
same, it is either the fractional complement or a multiple 
of the same fraction. Thus to step to N2 one obtains the 
analogous equation: 
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Similarly,  the equation to compute the ambiguity value 
for the average of the carrier-phase on L1 and L2 (which 
typically gives the most accurate position) is: 
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Obviously there is no noise present in the value for Nw in 
any of the equations above. The noise in the computed 
value of the integer ambiguity arises from the 
amplification of the multipath corruption of the carrier-
phase measurements in the right-hand term of the above 
equations. This noise rarely exceeds one-cycle.  Thus, a 
search for the narrow-lane ambiguity value which 
minimizes the rss residuals, need only test for the two 
integer values closest to the value computed in the above 
equations. 

SCORING THE INTEGER COMBINATIONS 

The wide-lane integer combinations with rss residuals less 
than a threshold, or if more than ten, the ten combinations 
with the smallest rss residuals are subject to the narrow-
lane search and assigned a score. Like a golf score, the 
lowest scores are considered the best scores.  The score 
assigned to each combination is a function of a number of 
parameters. The factors considered in assigning a score 
include the following: 1) the narrow lane residuals; 2) the 
refraction corrected residuals; 3) the L1 and L2 position 
separation (note that the matrix defined by the left hand 
side of equation (9), which is needed to compute the S 
matrix, can be used to compute the position updates or 
position separation simply by multiplying by the 
appropriately scaled search permutations); 4) the distance 
from the code solution; 5) the number of the wide-lane 
integers in the permutation which selected the larger 
(greater than 0.5) fractions; and 6) the number of narrow-
lane integers in the permutation which selected the larger 
fractions.  

The above factors are used to assign a score to each 
permutation which meets a number of criteria. Among the 
criteria is that the score be less than a threshold value, and 

that threshold value is itself a function of the separation 
distance between the base station and the user. If no 
permutation is selected as the correct permutation, the 
scores are cumulated from epoch to epoch. 

 The best integer ambiguity permutation is assigned a 
differential score.  This differential score is the difference 
between the second best permutation and the best. If there 
is no second best permutation which is acceptable then 
the differential score of the best permutation is the 
difference between the score threshold and the best 
permutation’s score.  If the differential score is large 
enough the best permutation is accepted as the correct 
integer ambiguity set. However, if there are fewer than 
seven satellites involved in the ambiguity search, the 
entire process is repeated and several repeated selections 
of the same integer ambiguity permutation is required for 
final acceptance as the correct set of integers. 

While the above process is a bit complicated, when seven 
or more satellites are available, it often provides the 
correct integer ambiguity set in a single epoch. 
Identifying the wrong set of integers as the correct set 
typically occurs only a few times out of 1000 attempts. 
When at least seven satellites are available integer 
ambiguity failure is extremely rare. 

TEST RESULTS 

The RTK ambiguity search process described above has 
been incorporated into NavCom’s dual-frequency OEM 
GPS receivers. However, in order to more easily evaluate 
the ambiguity resolution process, an offline version was 
also built. The offline capability allows one to perform 
scoring runs in which the ambiguity search process is 
repeated over and over. As soon as one set of integer 
ambiguity values is declared correct, the search process is 
reinitialized (which takes one epoch) and a new search is 
performed.  

Figures 1 and 2 show the results of processing 10 hours of 
short baseline (approximately 10 meters) in a scoring run.  
13,659 successful searches were conducted. 84% of the 
searches were accomplished in a single epoch. 

Figure 3 and 4 show the results of processing 
approximately an hour and a half of data collected over a 
5 kilometer baseline. 1,772 successful searches were 
conducted of which 82% were accomplished in a single 
epoch. 

The navigation accuracy is shown in a bull’s eye plot in  
Figure 5.  The standard deviation in north, east and up 
were 4, 5 and 11 millimeters respectively. 
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Figure 1. Short Baseline Scoring Run Search Time vs. Run Time 

 

Figure 2. Short Baseline Scoring Run Histogram of Search Times 
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Figure 3. Five Kilometer Scoring Run 

Figure 4. Five Kilometer Scoring Run 
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Figure 5. RTK Navigation Results – Horizontal Position Scatter Plot

 

CONCLUSION 

A new approach to the ambiguity resolution process has 
been described. It is computationally efficient, in that a 
simple process is used to compute the residuals without 
first computing a position solution. Position solutions are 
computed (also using a simplified process) only when the 
residuals indicate the particular integer ambiguity 
permutation has a high probability of being the correct 
set. Using a wide-lane search before stepping to a narrow 
lane search, is also efficient in that fewer permutations are 
required to cover the same three-dimensional search 
region. The frequency-weighted code combination 
ensures a starting position with minimal multipath 
corruption and the longer the search takes the better the 
initial code solution becomes because of the code-
smoothing employed. As shown by the test results, the 
search procedure is highly reliable and 80% or more of 
the searches are successfully completed in a single epoch. 
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